Unlocking the Potential of Every Child

Calculation
 Guide

Revised: June 2021
Review Date: June 2022

Aligned to the 2014 English National Curriculum for Mathematics, the Safa British School Calculation Policy aims to provide a clear progression for carrying out written calculations.

This policy emphasizes the development of understanding starting with concrete methods of learning, followed by pictorial methods before moving to abstract.

This should allow enough time for children to comprehend methods to a deeper level before they experience mastery level questions. This, along with the Singapore Method of teaching Mathematics, develops pupils' mathematical ability and confidence without having to resort to memorizing procedures - making Mathematics more engaging and interesting.

This policy includes several areas of guidance:

1. A quick reference calculation overview
2. A detailed policy for the progression of addition, subtraction, multiplication and division
3. Mastery in calculation
4. The Singapore Bar Method to support understanding
*Policy adapted using 'Maths No Problem' and White Rose Maths Hub guidance as well as NCETM/MathsHub ‘Teaching For Mastery resources.

Calculation Overview

	FS/ Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers	Column method- regrouping. Using place value counters (up to 3 digits).	Column method- regrouping. (up to 4 digits)	Column method- regrouping. Use of place value counters for adding decimals.	Column method- regrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.
Multiplication	Recognizing and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays $2 d \times 1 d$ using base 10	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multidigit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainderusing lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Calculation Progression

Addition

| Objective and Strategies | Combining two parts |
| :--- | :--- | :--- | :--- |
| to make a whole: part | |
| whole model | |

Regrouping to make
10.
Adding three single
digits

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between 2 numbers.	Hannah has 23 sandwiches; Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part- Whole Model	Link to addition- use the part-whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part-whole model.	5 10 Move to using numbers within the part whole model.
Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?

Multiplication Note * In line with the NCfE, children are expected to have rapid recall of tables up to 12×12 by the end of Year 4-TTRS supports and tracks this.

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8 \\
\(4 \times 2=8\)
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. |
| $2,4,6,8,10$ |
| $5,10,15,20,25,30$ |

\hline
\end{tabular}

Repeated addition	Use different objects to add equal groups．	There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ 2 add 2 add 2 equals 6	Write addition sentences to describe objects and pictures．
Arrays－showing commutative multiplication	Create arrays using counters／cubes to show multiplication sentences．	Draw arrays in different rotations to find commutative multiplication sentences．	Use an array to write multiplication sentences and reinforce repeated addition． ○○○○○ 00000 $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Grid Method	Show the link with arrays to first introduce the grid method．	Children can represent the work they have done with place value counters in a way that they understand．	Start with multiplying by one digit numbers and showing the clear addition alongside the grid．

Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. 250 ml$\begin{gathered} 4+4+8+8+16 \\ 5 \times 8=40 \text { jugs } \end{gathered}$	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. 1342 x 18 This moves to the more 13420 compact method. 10736 24156 Decimal numbers should be multiplied as whole numbers but with amount of decimal places recorded (dp) and accounted for in the answer. $\begin{aligned} & 3.77 \times 2.8=? \\ & 3.77(2 \text { decimal places }) \\ & \times \frac{2.8}{3016}(1 \text { decimal place }) \\ & \frac{+754}{10.556} \\ & \text { (} 3 \text { decimal places) } \end{aligned}$

Division

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Sharing objects into groups \& I have 10 cubes, can you share them equally in 2 groups? \& Children use pictures or shapes to share quantities. \& Share 9 buns between three people.
$$
9 \div 3=3
$$

\hline Division as grouping \& \begin{tabular}{l}
Divide quantities into equal groups.

Use cubes, counters, objects or place value counters to aid understanding.
$$
96 \div 3=32
$$

 \& Use a number line to show jumps in groups. The number of jumps equals the number of groups. \&

$$
28 \div 7=4
$$

Divide 28 into 7 groups. How many are in each group?
\end{tabular}

\hline
\end{tabular}

Division within arrays
Division with a
remainder
Sivide objects between groups and see
how much is left over

Short division | Complete written divisions and |
| :--- |
| show the remainder using r . |
| more you need to jump to find a remainder. |

Mastery and Calculation

Mastery questions should be used when children are observed having a deeper understanding of calculation skills. See the examples for addition below. More examples can be found in the 'Teaching for Mastery' booklets for Year 1 to Year 6.

Addition

The Singapore Bar Method

The Singapore Bar Method should be used to help children apply their calculation skills when solving word problems. Children should start applying their calculation skills as soon as their calculation skills are secure. The table below shows examples of how the Bar Method can be used at different stages. For more word problems progressing from Foundation Stage to Year 6, see the Singapore Bar Method assessment questions.

Addition

Subtraction

